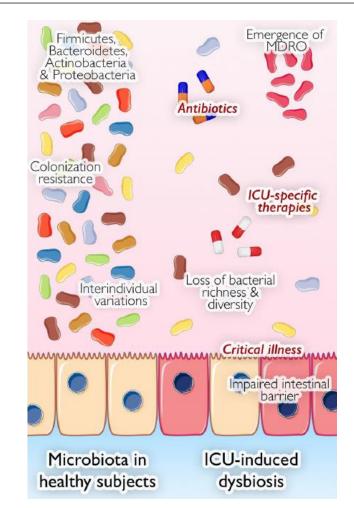
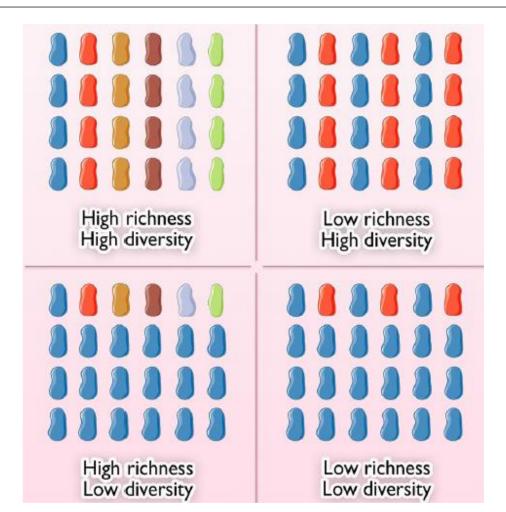


Ce que nous pouvons apprendre de la pandémie COVID-19

Décontamination digestive selective et Décontamination cutanée une hérésie,

des risques ou des solutions possibles?


Lila Bouadma
Medical and Infectious Diseases ICU
Bichat Hospital
Inserm UMR 1137 IAME
Paris-Diderot University
Paris FRANCE


REVIEW Open Access

The role of the microbiota in the management of intensive care patients

Piotr Szychowiak^{1,2}, Khanh Villageois-Tran^{1,3}, Juliette Patrier^{1,4}, Jean-François Timsit^{1,4} and Étienne Ruppé^{1,5*}

Oropharyngeal and intestinal concentrations of opportunistic pathogens are independently associated with death of SARS-CoV-2 critically ill adults

Juliette Patrier¹, Khanh Villageois-Tran^{2,3}, Piotr Szychowiak^{1,3}, Stéphane Ruckly^{3,5}, Rémi Gschwind³, Paul-Henri Wicky¹, Signara Gueye⁴, Laurence Armand-Lefevre^{3,4}, Mehdi Marzouk¹, Romain Sonneville^{1,3,5}, Lila Bouadma^{1,3,5}, Marie Petitjean³, Fariza Lamara^{1,5}, Etienne de Montmollin^{1,3,5}, Jean-Francois Timsit^{1,3,5*}, Etienne Ruppé^{3,4} and The French COVID Cohort Study Group

2022

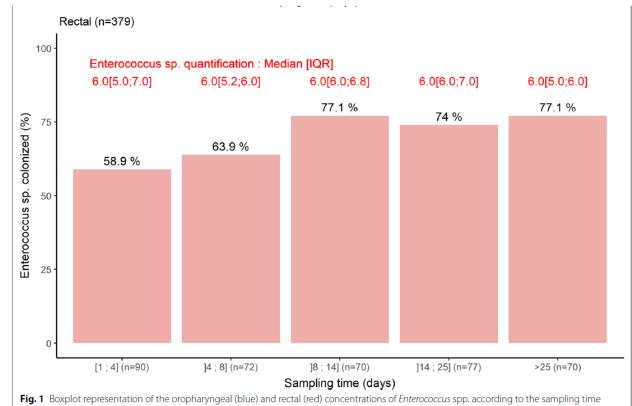
A single-center observational prospective (from March to September 2020) cohort study in critically ill patients admitted (N = 95) with severe SARS-CoV-2 infection.

Oropharyngeal and rectal swabs were collected (quantitative cultures, 165 rDNA sequencing

- at admission and
- then twice weekly
- until discharge or death.

Oropharyngeal and intestinal concentrations of opportunistic pathogens, intestinal richness and diversity were entered into a multivariable Cox model as time-dependent covariates. The primary outcome was death at day 90.

N = 765 samples


Oropharyngeal and intestinal concentrations of opportunistic pathogens are independently associated with death of SARS-CoV-2 critically ill adults

Juliette Patrier¹, Khanh Villageois-Tran^{2,3}, Piotr Szychowiak^{1,3}, Stéphane Ruckly^{3,5}, Rémi Gschwind³, Paul-Henri Wicky¹, Signara Gueye⁴, Laurence Armand-Lefevre^{3,4}, Mehdi Marzouk¹, Romain Sonneville^{1,3,5}, Lila Bouadma^{1,3,5}, Marie Petitjean³, Fariza Lamara^{1,5}, Etienne de Montmollin^{1,3,5}, Jean-Francois Timsit^{1,3,5*}, Etienne Ruppé^{3,4} and The French COVID Cohort Study Group

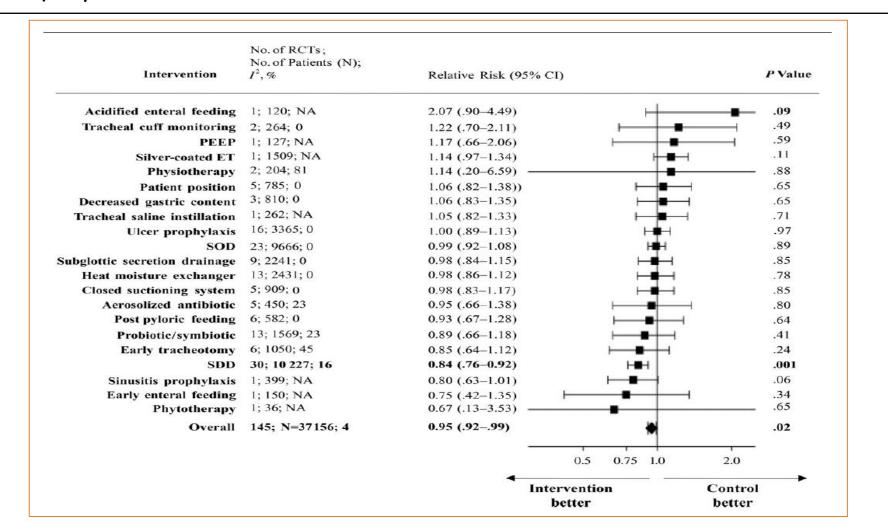
2022

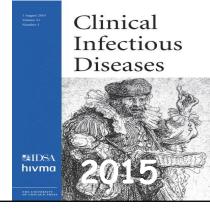
Table 3 Adjusted impact of *Enterococcus* spp., *S. aureus* and *Candida* spp. oropharyngeal and rectal abundances on day 90 mortality (combined analyses)

	HR	95% CI		p
Oropharynx				
Enterococcus spp. Quantitative (log)	1.100	1.010	1.197	0.0281
Antibiotic treatment active against Enterococcus/MRSA#	2.872	1.704	4.841	< 0.0001
Candida spp. Quantitative (log)	1.183	1.065	1.313	0.0017
Antifungal treatment active against Candida spp.#	1.499	0.846	2.655	0.1650
S. aureus quantitative (log)	1.265	1.112	1.440	0.0004
Antibiotic treatment active against anaerobic bacteria#	2.240	1.343	3.737	0.0020
Age*	1.026	1.004	1.049	0.0230
Chronic diseases**	2.047	1.273	3.291	0.0031
Daily SOFA score*	1.172	1.105	1.243	< 0.0001
Rectal				
Enterococcus spp. quantitative (log)	1.156	1.052	1.270	0.0026
Antibiotic treatment active against Enterococcus/MRSA#	2.253	1.296	3.915	0.0040
Candida spp. quantitative (log)	1.182	1.059	1.320	0.0029
Antifungal treatment active against Candida spp.#	0.991	0.558	1.759	0.9740
Antibiotic treatment active against anaerobic bacteria#	2.842	1.706	4.733	< 0.0001
S. aureus quantitative (log)	1.470	1.207	1.789	0.0001
Age*	1.030	1.008	1.053	0.0078
Chronic diseases**	2.071	1.267	3.386	0.0037
Daily SOFA score*	1.226	1.157	1.299	< 0.0001

A one-log increase in Enterococcus spp., S. aureus and Candida spp. in oropharyngeal or rectal swabs was associated with a 17% or greater increase in the risk of death.

Patrier et al.


DECONTAMINATION in critically ill patients


DD = selective oropharynge DD = selective digestive tra		Microorganisms targeted	HAIs prevention	
SOD	MOUTHPASTE Topical polymyxin, tobramycin, and amphotericin B delivered in THROAT	GNB/CGP*/YEASTS *with the exception of MRSA	Pneumoni	
	MOUTHPASTE Topical polymyxin, tobramycin, and amphotericin B delivered in THROAT			
	SUSPENSION Topical polymyxin, tobramycin, and amphotericin B delivered in GUT			
SDD strategy	AB IV A 4-day course of cefotaxime	GNB/CGP*/YEASTS *with the excepton of MRSA	Pneumonia BSI	
	Strict standard precautions			
	Twice weekly surveillance cultures of throat and rectum			
Skin bathing	Daily chlorhexidine body wash	MSSA/MRSA	BSI	
Nasal decontamination	Daily chlorhexidine body wash 2% mupirocin ointment intranasally 2/day		SSI	
Oral care	Mainly chlorhexidine mouthwash	GNB/CGP/YEASTS	Pneumonia	

MAJOR ARTICLE

Pneumonia Prevention to Decrease Mortality in ICU: A Systematic review and Meta-analysis

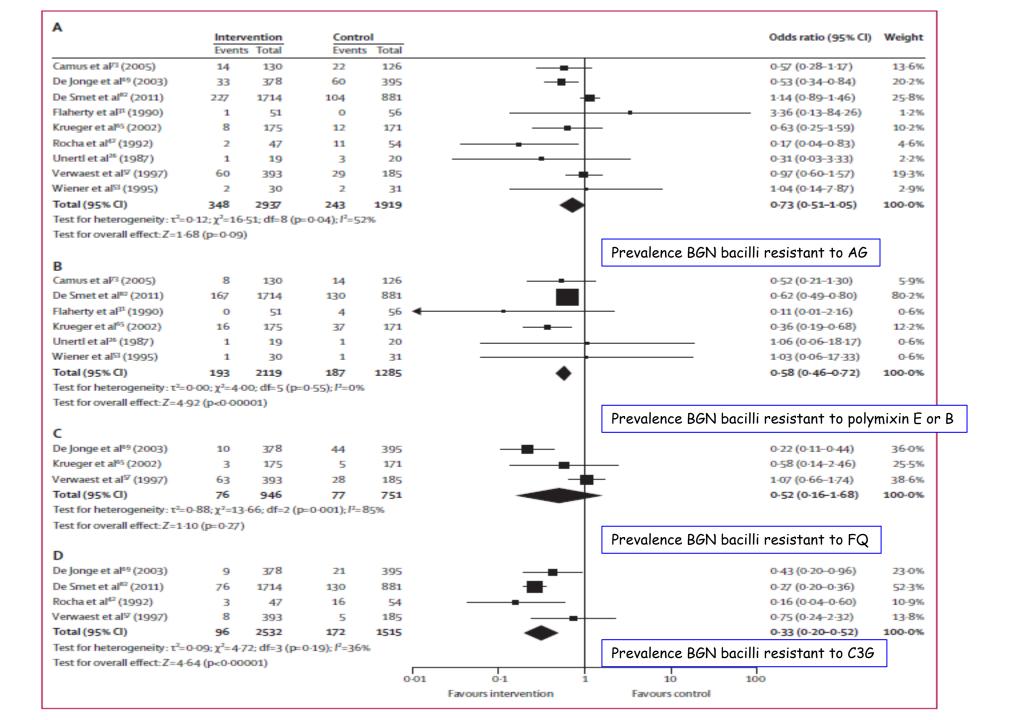
Antoine Roquilly, Emmanuel Marret, Edward Abraham and Karim Asehnoune

Articles

THE LANCET Infectious Diseases

2013

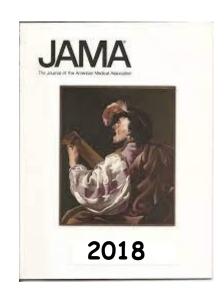
resistance in intensive care units: a systematic review and meta-analysis


Nick Daneman, Syed Sarwar, Robert A Fowler, Brian H Cuthbertson, on behalf of the SuDDICU Canadian Study Group

	Interve	ntion	Contro	l		Odds ratio (95% CI)	Weight
	Events	Total	Events	Total			
Camus et al ⁷³ (2005)	16	130	5	126		3.40 (1.21-9.57)	13-0%
De La Cal et al ⁷⁴ (2005)	14	53	11	54		1-40 (0-57-3-45)	15.2%
De Smet et al ⁶² (2011)	4	1714	0	881		4-64 (0-25-86-24)	2.5%
Ferrer et al ⁴⁹ (1994)	14	39	12	40		1-31 (0-51-3-35)	14.5%
Hammond et al ⁽¹ (1992)	15	115	6	125		2.98 (1.11-7.95)	13-8%
Krueger et al ⁶⁵ (2002)	2	175	7	171		0-27 (0-06-1-32)	7.3%
Sanchez-Garcia et al ⁵⁹ (1998)	3	131	4	140		0-80 (0-17-3-63)	7-8%
Verwaest et al ^{s7} (1997)	40	393	11	185		1-79 (0-90-3-58)	19-4%
Wiener et al ⁵³ (1995)	2	30	5	31		0-37 (0-07-2-08)	6-4%
Total (95% CI)	110	2780	61	1753		1-46 (0-90-2-37)	100-0%
Test for heterogeneity: τ ² =0-19	9; χ²=12·8	0; df=8 (p:	=0-12); P=379	6			
Test for overall effect: Z=1-52 (p=0-13)			_			
				0-0:	0-1 1 10	100	
					Favours intervention Favours control		

MRSA

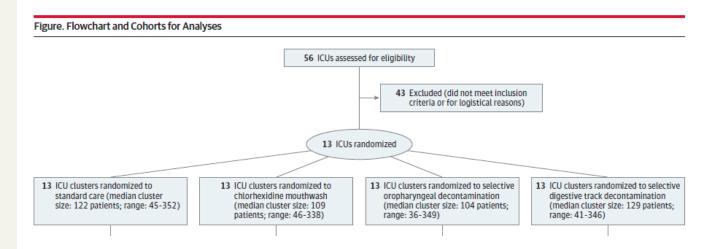
	Interve	ention	Contro					Odds ratio (95% CI)	Weight
	Events	Total	Events	Total					
Dahms et al ⁶⁰ (2000)	8	54	102	542				0-75 (0-34-1-64)	38-2%
De Jonge et al ⁴⁴ (2003)	4	378	5	395		-		0-83 (0-22-3-13)	13.3%
De La Cal et al ⁷⁴ (2005)	16	53	26	54				0-47 (0-21-1-03)	37-1%
De Smet et al ¹² (2009)	2	1000	6	1333		_	_	0-44 (0-09-2-20)	9-1%
Van Der Voort et al ⁷² (2004)	1	529	0	513				2-91 (0-12-71-72)	2.3%
Total (95% CI)	31	2014	139	2837	•			0.63 (0.39-1.02)	100.0%
Test for heterogeneity: τ²=0-0	0; χ²=1-99	9; df=4 (p	=0·74); <i>P</i> =0%		•				
Test for overall effect: Z=1-90	(p=0-06)								
				0.01	0-1	1	10	100	
					Favours intervention		Favours control		


VRE

JAMA | Original Investigation | CARING FOR THE CRITICALLY ILL PATIENT

Decontamination Strategies and Bloodstream Infections With Antibiotic-Resistant Microorganisms in Ventilated Patients A Randomized Clinical Trial

Bastiaan H. Wittekamp, MD, PhD; Nienke L. Plantinga, MD, PhD; Ben S. Cooper, PhD; Joaquin Lopez-Contreras, MD, PhD; Pere Coll, MD, PhD; Jordi Mancebo, MD; Matt P. Wise, MD, PhD; Matt P. G. Morgan, MD, PhD; Pieter Depuydt, MD, PhD; Jerina Boelens, MD, PhD; Thierry Dugernier, MD, PhD; Valérie Verbelen, PhD; Philippe G. Jorens, MD, PhD; Walter Verbrugghe, MD; Surbhi Malhotra-Kumar, PhD; Pierre Damas, MD, PhD; Cécile Meex, PhD; Kris Leleu, MD; Anne-Marie van den Abeele, MD; Ana Filipa Gomes Pimenta de Matos, MSc; Sara Fernández Méndez, MD; Andrea Vergara Gomez, Msc; Viktorija Tomic, MD, PhD; Franc Sifrer, MD; Esther Villarreal Tello, MD; Jesus Ruiz Ramos, PhD; Irene Aragao, MD; Claudia Santos, MD; Roberta H. M. Sperning, Msc; Patrizia Coppadoro, BSc; Giuseppe Nardi, MD; Christian Brun-Buisson, MD, PhD; Marc J. M. Bonten, MD, PhD



OBJECTIVE To determine associations between CHX 2%, SOD, and SDD and the occurrence of ICU-acquired bloodstream infections with multidrug-resistant gram-negative bacteria (MDRGNB) and 28-day mortality in ICUs with moderate to high levels of antibiotic resistance.

DESIGN, SETTING, AND PARTICIPANTS Randomized trial conducted from December 1, 2013, to May 31, 2017, in 13 European ICUs where at least 5% of bloodstream infections are caused by extended-spectrum β-lactamase–producing Enterobacteriaceae. Patients with anticipated mechanical ventilation of more than 24 hours were eligible. The final date of follow-up was September 20, 2017.

INTERVENTIONS Standard care was daily CHX 2% body washings and a hand hygiene improvement program. Following a baseline period from 6 to 14 months, each ICU was assigned in random order to 3 separate 6-month intervention periods with either CHX 2% mouthwash, SOD (mouthpaste with colistin, tobramycin, and nystatin), or SDD (the same mouthpaste and gastrointestinal suspension with the same antibiotics), all applied 4 times daily.

MAIN OUTCOMES AND MEASURES The occurrence of ICU-acquired bloodstream infection with MDRGNB (primary outcome) and 28-day mortality (secondary outcome) during each intervention period compared with the baseline period.

Abbreviations: ICU, intensive care unit; MV, mechanical ventilation.

^a Some patients had multiple reasons for exclusion.

^b The cohort for hospital mortality included 8509 unique hospital admissions, 37 with missing hospital mortality status.

^c The cohort for 28-day mortality included 8496 unique ICU admissions with no prior ICU admission within 30 days, 56 with missing 28-day mortality status.

JAMA | Original Investigation | CARING FOR THE CRITICALLY ILL PATIENT

Decontamination Strategies and Bloodstream Infections With Antibiotic-Resistant Microorganisms in Ventilated Patients A Randomized Clinical Trial

Bastiaan H. Wittekamp, MD, PhD; Nienke L. Plantinga, MD, PhD; Ben S. Cooper, PhD; Joaquin Lopez-Contreras, MD, PhD; Pere Coll, MD, PhD; Jordi Mancebo, MD; Matt P. Wise, MD, PhD; Matt P. G. Morgan, MD, PhD; Pieter Depuydt, MD, PhD; Jerina Boelens, MD, PhD; Thierry Dugernier, MD, PhD; Valérie Verbelen, PhD; Philippe G. Jorens, MD, PhD; Walter Verbrugghe, MD; Surbhi Malhotra-Kumar, PhD; Pierre Damas, MD, PhD; Cécile Meex, PhD; Kris Leleu, MD; Anne-Marie van den Abeele, MD. And Filing Company Discorded Alexander Alexander

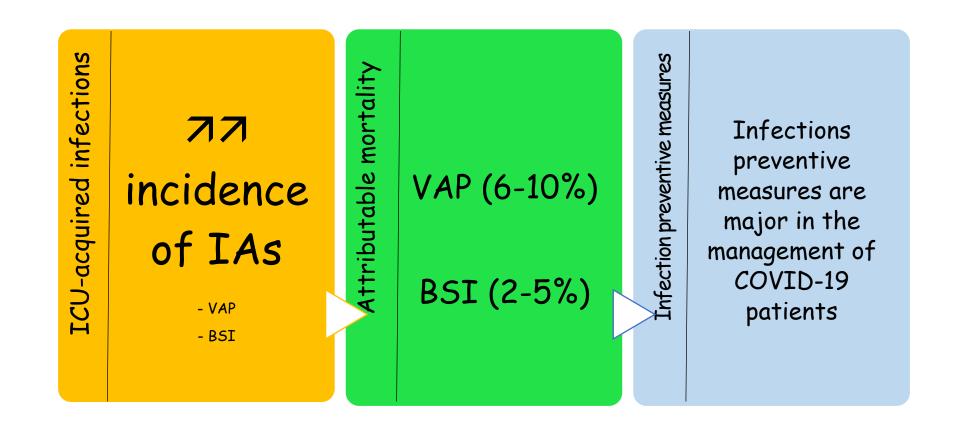
Roberta H. M. Sperning, Msc; Patrizia Coppado

Viktorija Tomic, MD, PhD; Franc Sifrer, MD; Est Table 2. ICU-Acquired Bloodstream Infections per Study Group

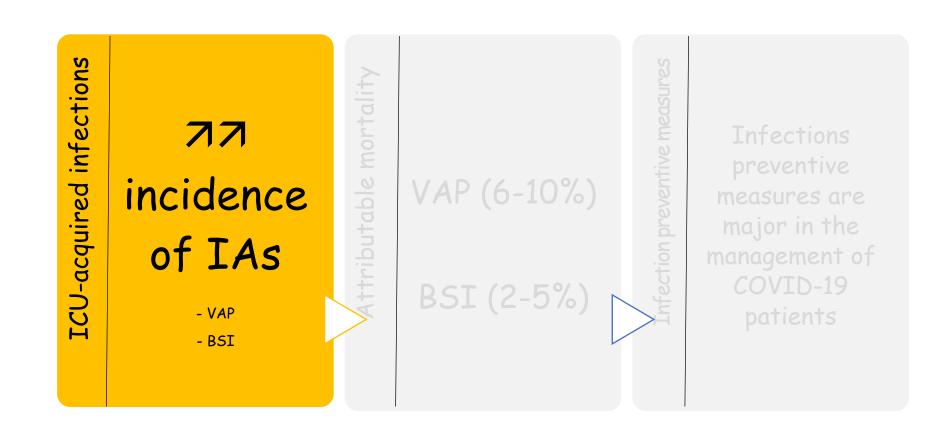
	Baseline (n :	= 2251)	CHX (n = 21	08)	SOD (n = 22	24)	SDD (n = 2082)	
Study Group	No. of Episodes	Proportion of BSI Episodes, %						
Primary Outcome: ICU-Acqui	red BSIs With Mu	ıltidrug-Resistant G	Fram-Negative E	Bacteria (MDRGNB)	a,b			
BSI with MDRGNB, No. of episodes, (No. of patients)	52 (47)		41 (38)		34 (33)		27 (26)	
Enterobacteriaceae	39	75.0	29	70.7	26	76.5	24	88.9
Resistant to third-generation cephalosporins	35		25		24		24	
Resistant to colistin	2		2		5		5	
Glucose nonfermenting gram-negative bacteria	9	17.3	10	24.4	5	14.7	3	11.1
Pseudomonas species	4		9		3		2	
Other glucose nonfermenting gram-negative bacteria ^c	4	7.7	2	4.9	3	8.8	0	0.0

R1.2 - In units where multidrug-resistant bacteria prevalence is weak (< 20%), we suggest applying a selective digestive decontamination using a topical antiseptic administered enterally and a prophylactic antibiotic through systemic administration for < 5 days to decrease mortality.

GRADE 2+, STRONG AGREEMENT


SDD has shown a significant decrease in hospitality mortality, lengths of mechanical ventilation and HAP incidence in ICU patients [Liberati, Cochrane Database Syst Rev, 2009].

The effect of SDD on mortality


- was similar in medical and surgical patients [Melsen, Br J Surg, 2012].
- was greater in patients with high overall mortality [Roquilly, CID, 2015].
- was only observed for strategies including a topical antiseptic administered enterally and systemic prophylactic antibiotic use [Roquilly, CID, 2015].

Studies testing SDD were conducted in environments where the prevalence of multiresistant bacteria was low [de Smet, NEJM, 2009], with no link between SDD and the development of bacterial resistance [Daneman, LID, 2017].

Rationale for using decontamination in patients with COVID-19

Rationale for using decontamination in patients with COVID-19

Are patients with SARS-CoV-2 pneumonia at increased risk of HIAs?

PRO

- > ARDS a well-known risk factor for VAP
- Specific pulmonary lesions related to SARS-CoV-2 infection
- > Long duration of mechanical ventilation
- > SARS-CoV-2 is responsible for altered immune response
- > Immunosuppressive agents are commonly used
- > Severe lung and gut endothelial injury
- > Covid-19 associated surge

CON

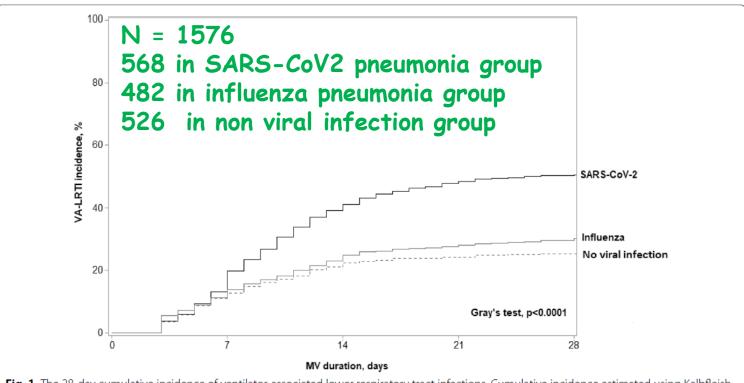
- > Low severity score
- > A higher nurse/patients ratio

Strict hygiene and isolation measures used to avoid cross-transmission of the virus

ORIGINAL

Relationship between SARS-CoV-2 infection and the incidence of ventilator-associated lower respiratory tract infections: a European multicenter cohort study

Check for updates



Anahita Rouzé^{1,2}, Ignacio Martin-Loeches^{3,4}, Pedro Povoa^{5,6}, Demosthenes Makris⁷, Antonio Artigas⁸,

- A multicenter retrospective European cohort performed in 36 ICUs.
- All adult patients receiving IMV>48 h, if they had: SARS-CoV-2 pneumonia, influenza pneumonia, or no viral infection at ICU admission.
- VA-LRTI, including VAT and VAP, diagnosed using clinical, radiological and quantitative microbiological criteria.
- All VA-LRTI were prospectively identified, and chest-X rays were analyzed by at least two physicians.
- Cumulative incidence of first episodes of VA-LRTI was estimated using the Kalbfleisch and Prentice method, and compared using Fine-and Gray models.
- Cause-specific regression model.

Take-home message

The incidence of VA-LRTI is significantly higher in patients with SARS-CoV-2 infection, as compared to patients with influenza pneumonia, or no viral infection.

Fig. 1 The 28-day cumulative incidence of ventilator-associated lower respiratory tract infections. Cumulative incidence estimated using Kalbfleish and Prentice method, considering extubation (dead or alive) within 28 days as competing event. *VA-LRTI* ventilator-associated respiratory tract infection, *MV* mechanical ventilation

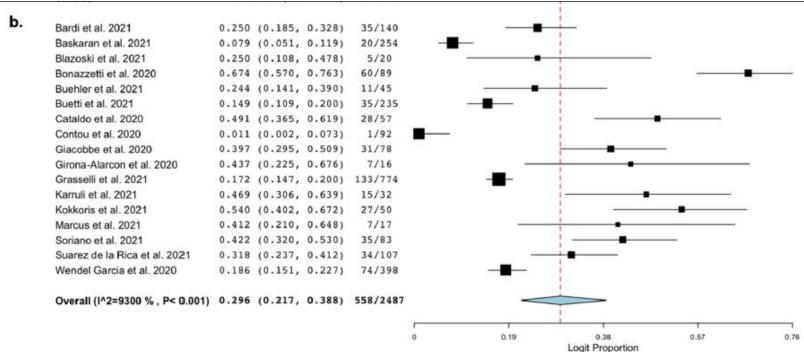
ORIGINAL

Relationship between SARS-CoV-2 infection and the incidence of ventilator-associated lower respiratory tract infections: a European multicenter cohort study

Anahita Rouzé^{1,2}, Ignacio Martin-Loeches^{3,4}, Pedro Povoa^{5,6}, Demosthenes Makris⁷, Antonio Artigas⁸,

Table 3 Incidence of first episodes of ventilator-associated lower respiratory tract infections

					Unadjusted SHR (95%CI)	Adjusted SHR (95%CI)e		
	SARS- Influenza No viral p value ^a CoV-2 $(n=482)$ infection $(n=568)$ $(n=526)$		SARS-CoV-2 vs. Influenza	SARS-CoV-2 vs. No viral infec- tion	SARS-CoV-2 vs. Influenza	SARS-CoV-2 vs. No viral infec- tion			
VALRTI	287 (50.5)	146 (30.3)	133 (25.3)	< 0.0001	1.87 (1.53-2.27) ^b	2.27 (1.84-2.79) ^b	1.60 (1.26-2.04) ^b	1.7 (1.2-2.39) ^b	
VAT ^c	82 (14.4)	39 (8.1)	46 (8.8)	0.0001	1.83 (1.25-2.68) ^b	1.69 (1.18-2.43) ^b	1.50 (0.89-2.54)	1.25 (0.7-2.2)	
VAP ^d	205 (36.1)	107 (22.2)	87 (16.5)	< 0.0001	1.74 (1.38-2.2) ^b	2.38 (1.84-3.06) ^b	1.57 (1.2-2.04) ^b	1.84 (1.26-2.7) ^b	



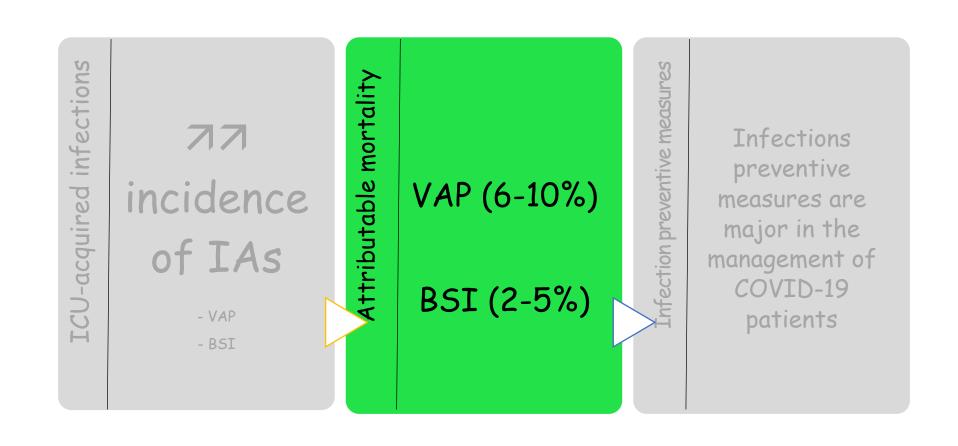
Article

Bloodstream Infections in Hospitalized Patients with COVID-19: A Systematic Review and Meta-Analysis

Mariachiara Ippolito ¹, Barbara Simone ¹, Carlotta Filisina ¹, Francesca Romana Catalanotto ¹, Giulia Catalisano ¹, Claudia Marino ¹, Giovanni Misseri ², Antonino Giarratano ^{1,3} and Andrea Cortegiani ^{1,3},*

Open Forum Infectious Diseases

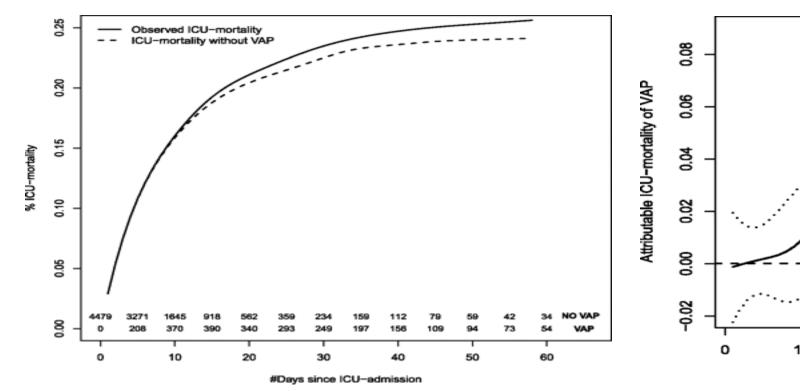
MAJOR ARTICLI

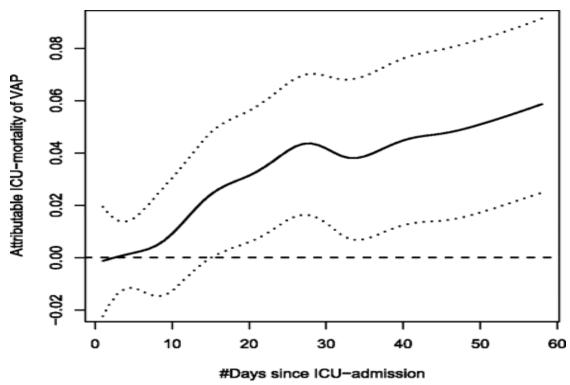


Coronavirus Disease 2019–Associated Invasive Fungal Infection

John W. Baddley, ^{1,a,©} George R.Thompson III, ^{2,a} Sharon C.-A. Chen, ³ P. Lewis White, ⁴ Melissa D. Johnson, ⁵ M. Hong Nguyen, ⁶ Ilan S. Schwartz, ⁷ Andrej Spec, ⁸ Luis Ostrosky-Zeichner, ^{9,©} Brendan R. Jackson, ¹⁰ Thomas F. Patterson, ^{11,12} and Peter G. Pappas ¹³

	Re	eports focused on I	CU patients only		
New Delhi, India [6]	ICU	2.5% (15/596)	Blood	C. auris (10) predominant, Ca (3), Ct (1), Ck (1)	April to July 2020
Milan, Italy [7]	ICU	3.4% (3/89)	Blood	Not described	February 21 to April 30, 2020
Genoa, Italy [8]	ICU	3.8% (3/78)	Blood	Ca (1), Cp (1) and Ct (1)	February 20 to April 10, 2020
NY, USA [9]	ICU	5.1% (12/236)	Blood	Ca (4), Cp (3), Cg (2), Ct (2), C. dubliniensis (1)	Start date not known; end date: Oct 31, 2020
Rome, Italy [10]	ICU	8.8% (5/57)	Blood	Ca (2), Cp (2), Cg+Cp (1)	March 1 to April 15
New Jersey, US [11]	ICU	8.9% (8/89)	Blood	Ca (2), Cp (2), Cg (2), Ct (2)	March 10 to April 10, 2020
Spain [12]	ICU	11% (15/139)	Included blood only (other sites excluded)	Ca (9), Cp (4), Cg (2)	February 28 to June 28, 2020
Welsh, UK	ICU	11.8% (16/135), and a case of Rhodotorula	Blood (15) Ascites (1) Chest drain (1)	Candida sp (Ca most common) Candida sp (1), non-speciated yeast (1)	Timeline not given
Athens, Greece [14]	ICU	14% (7/50)	Blood	Ca (4), Cp (3)	March 19 to May 20, 2020

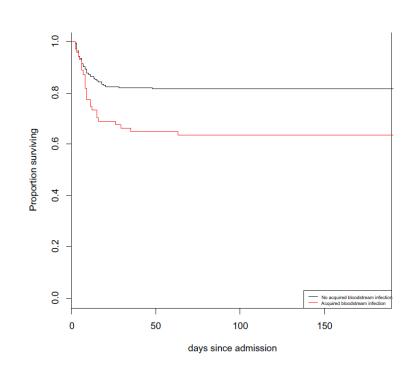

Rationale for using decontamination in patients with COVID-19



Attributable mortality of ventilator-associated pneumonia: a reappraisal using causal analysis.

Bekaert M, Timsit JF, Vansteelandt S, Depuydt P, Vésin A, Garrouste-Orgeas M, Decruyenaere J, Clec'h C, Azoulay E, Benoit D; Outcomerea Study Group

European Journal of Clinical Microbiology & Infectious Diseases


Attributable mortality of ICU acquired bloodstream infections: a propensity-score matched analysis

Nicolas Massart 1,2,3 • Guilhem Wattecamps 4 • Mikael Moriconi 4 • Pierre Fillatre 1

Table 1 Baseline characteristics and outcome of study patients

	All pa	tients	Patier	nts with BSI	Match	hed patients	p-value*	Standardized mean difference	
	n = 2464		n = 7	1	n=2	13		mean difference	
Age, years, median [IQR]	64.9	[55.2-73.4]	64.8	[53.1-70.4]	63.7	[55.2-62.0]	0.85	0.47	
SAPS II, median [IQR]	44	[32-58]	53	[34-66]	48	[37-64]	0.80	1.00	
Male – no. (%)	1598	(64.9)	49	(69.0)	147	(69.0)	1	0.00	
Localization before admission									
Acute care ward - no. (%)	914	(37.1)	31	(43.7)	87	(40.9)	0.78	0.03	
Home – no. (%)	1439	(58.4)	36	(50.7)	111	(52.1)	0.94	0.01	
Long-term care facility- no. (%)	31	(1.3)	2	(2.8)	9	(4.2)	0.86	0.01	
Other ICU – no. (%)	53	(2.2)	1	(1.4)	4	(1.9)	0.75	0.00	
Reason for admission									
Trauma – no. (%)	162	(65.8)	4	(5.6)	16	(7.5)	0.79	0.02	
Surgical – no. (%)	496	(20.1)	17	(23.9)	54	(25.4)	0.94	0.01	
Medical – no. (%)	1968	(79.9)	54	(76.1)	159	(74.6)	0.94	0.01	
Antibiotic before admission – no. (%)	1434	(58.2)	42	(59.2)	136	(63.9)	0.57	0.00	
Immunosuppresion – no. (%)	140	(5.7)	4	(5.6)	10	(4.7)	1	0.00	
Neutropenia (<500/mL) – no. (%)	31	(1.3)	1	(1.4)	2	(0.9)	1	0.00	
Intubation during period at risk for BSI – no. (%)	1731	(70.3)	65	(91.6)	196	(92.0)	1	0.00	
Catheter during period at risk for BSI – no. (%)	1621	(65.8)	67	(94.4)	202	(94.8)	1	0.00	
Number of days at risk for BSI, days, median [IQR]	4	[1-9]	6	[3-12]	6	[2-11]	0.64	0.06	
Lenght of stay in ICU, days, median [IQR]	6	[3-12]	18	[13-44]	8	[5-14]	< 0.001		
Death in ICU – no. (%)	459	(18.6)	26	(36.6)	46	(21.6)	0.018		

ICU intensive care unit. *For comparison between patients with BSI and matched patients

Open Access RESEARCH

Relationship between ventilator-associated pneumonia and mortality in COVID-19 patients: a planned ancillary analysis of the coVAPid cohort

2021

Planned ancillary analysis of a multicenter retrospective European cohort.

VAP was diagnosed using clinical, radiological and quantitative microbiological criteria.

Univariable and multivariable marginal Cox's regression models, with cause-specific hazard for duration of mechanical ventilation and ICU stay, were used to compare outcomes between study groups. Extubation, and ICU discharge alive were considered as events of interest, and mortality as competing event.

	SARS-CoV-2 pne	umonia
	Alive (n = 402)	Dead (n = 166)
Age, years ^a	62 (53–70)	70 (62–78)
Men	281/402 (69.9)	126/166 (75.9)
Body mass index, kg/m ^{2 b}	28.7 (25.5-33.6)	29.1 (26.0-33.0)
Severity scores		
SAPS II ^c	38 (31–51)	48 (38-61)
SOFA score ^d	6 (3–8)	7 (4–10)
Comorbidity scores		
MacCabe classification		
Non-fatal	347/382 (90.8)	128/161 (79.5)
Fatal < 5 years	33/382 (8.6)	29/161 (18.0)
Fatal < 1 year	2/382 (0.5)	4/161 (2.5)
Charlson Comorbidity Index ^e	2 (1–3)	4 (2-5)

Relationship between ventilator-associated pneumonia and mortality in COVID-19 patients: a planned ancillary analysis of the coVAPid cohort

Saad Nseir^{1,2*}, Ignacio Martin-Loeches^{3,4}, Pedro Povoa^{5,6}, Matthieu Metzelard⁷, Damien Du Cheyron⁸,

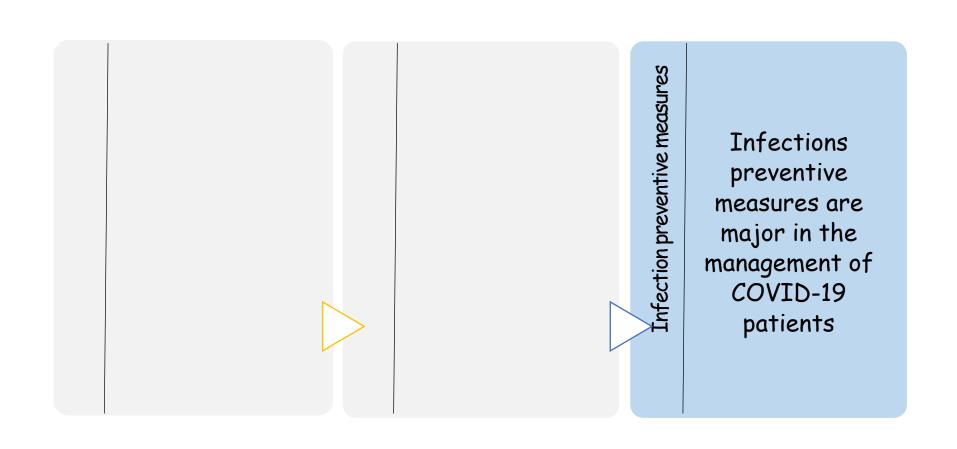
Table 1 Patient characteristics at ICU admission according to disease group, and 28-day mortality

	SARS-CoV-2 pne	umonia	Influenza pneun	nonia	No viral infectio	n
	Alive (n = 402)	Dead (n = 166)	Alive (n = 350)	Dead (n = 132)	Alive (n = 344)	Dead (n = 182)
Age, years ^a	62 (53–70)	70 (62–78)	61 (52–70)	65 (54–72)	63 (52–72)	70 (60–76)
Men	281/402 (69.9)	126/166 (75.9)	219/350 (62.6)	79/131 (60.3)	239/342 (69.9)	114/182 (62.6)
Body mass index, kg/m ^{2 b}	28.7 (25.5-33.6)	29.1 (26.0–33.0)	27.5 (23.1–32.3)	27.6 (23.5–31.7)	26.3 (22.7–29.8)	26.9 (23.2–33.3)
Severity scores						
SAPS II ^c	38 (31–51)	48 (38-61)	48 (37–60)	58 (45-72)	51 (39–63)	63 (51–73)
SOFA score ^d	6 (3-8)	7 (4–10)	8 (5-10)	10 (7–13)	8 (5-11)	9 (7–12)
Comorbidity scores						
MacCabe classification						
Non-fatal	347/382 (90.8)	128/161 (79.5)	249/332 (75.0)	75/124 (60.5)	216/318 (67.9)	99/171 (57.9)
Fatal < 5 years	33/382 (8.6)	29/161 (18.0)	78/332 (23.5)	36/124 (29.0)	90/318 (28.3)	47/171 (27.5)
Fatal < 1 year	2/382 (0.5)	4/161 (2.5)	5/332 (1.5)	13/124 (10.5)	12/318 (3.8)	25/171 (14.6)
Charlson Comorbidity Index ^e	2 (1–3)	4 (2-5)	3 (2–5)	4 (2-6)	3 (2–5)	5 (3–6)

Relationship between ventilator-associated pneumonia and mortality in COVID-19 patients: a planned ancillary analysis of the coVAPid cohort

Saad Nseir^{1,2*}, Ignacio Martin-Loeches^{3,4}, Pedro Povoa^{5,6}, Matthieu Metzelard⁷, Damien Du Cheyron⁸,

		Undjuste	d		Adjusted	I	
Outcomes	Comparison groups	HR (95%CI)	P-Value		HR (95%CI)	P-Value	
Overall Survival	SARS-CoV-2 vs. Influenza	1.08 (0.83 to 1.39)	0.58		1.38 (1.03 to 1.84)	0.029	
	SARS-CoV-2 vs. No viral infection	0.80 (0.59 to 1.08)	0.14		1.21 (0.86 to 1.68)	0.027	
MV duration	SARS-CoV-2 vs. Influenza	0.73 (0.60 to 0.90) <0.00			0.70 (0.59 to 0.83)	<0.001	
	SARS-CoV-2 vs. No viral infection	0.61 (0.49 to 0.74)	<0.001		0.66 (0.55 to 0.80)	<0.001	
Length of ICU stay	SARS-CoV-2 vs. Influenza	0.97 (0.76 to 1.24) 0.81			1.24 (0.93 to 1.63)	0.14	
	SARS-CoV-2 vs. No viral infection	0.66 (0.48 to 0.91)	0.009	+-	1.10 (0.78 to 1.55)	0.59	
		0.1		1.0	10.0		
		-		Adjusted HR (95%CI)	<u> </u>	→	
		Favors an increase in			Favors a decrea	ase in	
		Survival			Survival		
		MV duration			MV duration		
		Length of ICU st	ay		Length o	of ICU stay	


Relationship between ventilator-associated pneumonia and mortality in COVID-19 patients: a planned ancillary analysis of the coVAPid cohort

Saad Nseir^{1,2*}, Ignacio Martin-Loeches^{3,4}, Pedro Povoa^{5,6}, Matthieu Metzelard⁷, Damien Du Cheyron⁸,

		Unad	justed			Adju	justed	
VA-LRTI	Group	HR (95%CI)	Р	P het		HR (95%CI)	P	P het
None	SARS-CoV-2	1.00 (ref.)	-		+	1.00 (ref.)	-	
	Influenza	1.00 (ref.)	-		+	1.00 (ref.)	-	
	No viral infection	1.00 (ref.)	-		+	1.00 (ref.)	-	
VAT	SARS-CoV-2	1.12 (0.61 to 2.05)	0.71	0.94		1.09 (0.65 to 1.81)	0.74	0.62
	Influenza	1.29 (0.63 to 2.61)	0.48			1.69 (0.81 to 3.53)	0.16	
	No viral infection	1.11 (0.66 to 1.87)	0.97			1.18 (0.66 to 2.08)	0.57	
VAP	SARS-CoV-2	1.50 (1.07 to 2.09)	0.018	0.24		1.65 (1.11 to 2.46)	0.013	0.42
	Influenza	1.86 (1.11 to 3.10)	0.017			1.74 (0.99 to 3.06)	0.052	
	No viral infection	1.01 (0.60 to 1.69)	0.97			1.13 (0.68 to 1.86)	0.63	
		0.1			1.0	10.0		
		Favors a decrea			Adjusted HR (95%CI)	Favors an increase in mortality risk		

Rationale for using decontamination in patients with COVID-19

Ventilator-associated pneumonia in critically-ill patients with COVID-19 in a setting of selective decontamination of the digestive tract

Sinta B. van der Meer^{1†}, Grace Figaroa^{1†}, Peter H. J. van der Voort¹, Maarten W. Nijsten¹ and Janesh Pillay^{1,2*}

Assessment of their practice of care, including SDD, and the associated incidence of VAP in patients infected with SARS-COV-2 and compared it to current literature.

A single center retrospective observational study in the University Medical Center of Groningen (UMCG), The Netherlands.

All adult patients consecutively admitted to our ICU between March 2020 and February 2021 with PCR-confirmed COVID-19 were included.

Standard care with SDD included microbiological surveillance of respiratory samples, throat and rectal swabs at admission, and twice weekly thereafter.

All patients were retrospectively reviewed for presence of VAP.

SDD strategy

MOUTHPASTE

Topical polymyxin, tobramycin, and amphotericin B delivered in THROAT

SUSPENSION

Topical polymyxin, tobramycin, and amphotericin B delivered in GUT

ABIV

A 4-day course of cefotaxime

Strict standard precautions

Twice weekly surveillance cultures of throat and rectum

RESEARCH LETTER Open Access

Check for updates

Ventilator-associated pneumonia in critically-ill patients with COVID-19 in a setting of selective decontamination of the dig Table 1 Characteristics of patients with and without VAP

2021

Sinta B. van der Meer¹¹

	No VAP n = 190 (90%)	$VAP^{a} n = 22 (10\%)$	<i>p</i> value	
Age	63 (56–70)	65 (54–23)	.75	
Gender (female)	57 (30%)	4 (18%)	.32	
BMI > 30	78 (41%)	7 (32%)	.49	
Diabetes mellitus	54 (28%)	4 (18%)	.45	
Hypertension	75 (40%)	9 (41%)	1.00	
Chronic kidney disease	16 (8%)	0	.38	
Chronic lung disease	25 (13%)	6 (27%)	.10	
Immune compromised	24 (13%)	0	.14	
SOFA-score	6 (4–7)	7 (4–7)	.26	
Time to VAP (days)	na	12 (7–17)		
Use of SDD	189 (99.5%)	22 (100%)	1.00	
Corticosteroids	118 (62%)	15 (68%)	.65	
ECMO	12 (6%)	3 (14%)	.19	
CRRT	24 (13%)	2 (9%)	1.00	
Proning during MV	107 (56%)	19 (86%)	.006	
Length of MV (days)	13 (8–21)	26 (15–33)	< 0.0001	
Length of ICU stay (days)	15 (9–22)	25 (21–35)	< 0.0001	
ICU mortality	57 (30%)	9 (41%)	.33	

Data are reported as median (IQR-range) or n (%). p values were calculated using Mann–Whitney U test and Chi-Square test in SPSS

^a Positive cultures contained S. aureus (n = 7), P. aeruginosa n = 4), S. marcescens (n = 3), S. paucimobilis (n = 2), K. pneumoniae (n = 2), E. coli, P. agglomerans, A. fumigatus and Proteus mirabilis. Low pathogenic bacteria (enterococci and bacillus) were excluded from our VAP definition

LETTER

Absence of candidemia in critically ill patients with COVID-19 receiving selective digestive decontamination

Jochem B. Buil^{1,2,3*}, Jeroen A. Schouten^{2,3,4}, Joost Wauters⁵, Hans van de Hoeven⁴ and Paul E. Verweij^{1,2,3} on behalf of CAC-SDD study group

Assessment of the frequency of COVID-19 associated candidemia (CAC) in critically ill patients in a tertiary care university medical center in Netherlands

ICU, patients with an anticipated admission duration of > 3 days or mechanical ventilation for > 2 days receive selective decontamination of the gastrointestinal tract (SDD)

Over a 30-month period (March 2020-November 2021).

SDD

strategy

MOUTHPASTE

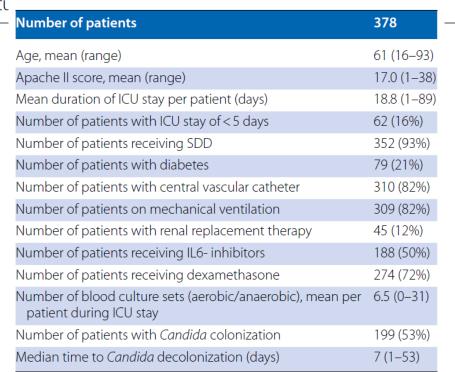
Topical polymyxin, tobramycin, and amphotericin B delivered in THROAT

SUSPENSION

Topical polymyxin, tobramycin, and amphotericin B delivered in GUT

AB IV

A 4-day course of cefuroxime


Strict standard precautions

Twice weekly surveillance cultures of throat and rectum

LETTER

Absence of candidemia in critically ill patients with COVID-19 receiving selective digestive decontamination

Jochem B. Buil^{1,2,3*}, Jeroen A. Schouten^{2,3,4}, Joost Wauters⁵ Hans van de Hoeven⁴ and Paul E. Verweij^{1,2,3} on behalf of CAC-SDD stu

Contents lists available at ScienceDirect

Anaesthesia Critical Care & Pain Medicine

journal homepage: www.elsevier.com

Nasal

decontamination

Letter to the Editor

Selective digestive decontamination to reduce the high rate of ventilator-associated pneumonia in critical COVID-19

D. Luque-Paz, P. Tattevin, P. Jaubert et al.

A retrospective observational study in two French ICUs (Rennes and Angers University Hospitals) with low baseline MDRGNB rates to compare the incidence of VAP with or without routine use of SDD...

All patients with documented COVID-19, mechanically ventilated for longer than 48 h between the 1st of January and the 31st of December 2020.

In one centre (Rennes), multiple site decontamination was routinely used SDD.

In the other centre (Angers), no topical antibiotics were used, and systemic antibiotics were prescribed only if bacterial infection was suspected, at the discretion of the attending physician.

MOUTHPASTE (whole duration of MV) (WDS) SOD Topical polymyxin, tobramycin, and amphotericin B delivered in THROAT **DECONTAMINATION** SUSPENSION (whole duration of MV) Topical polymyxin, tobramycin, and amphotericin B delivered in GUT AB IV **SDD** A 5-day course of cefotaxime strategy Strict standard precautions Twice weekly surveillance cultures of throat and rectum SI Skin Once daily chlorhexidine body wash bathing

2% mupirocin ointment intranasally 2/day

RENNES

Contents lists available at ScienceDirect

Anaesthesia Critical Care & Pain Medicine

journal homepage: www.elsevier.com

Letter to the Editor

Selective digestive decontamination to reduce the high rate of ventilator-associated pneumonia in critical COVID-19

D. Luque-Paz, P. Tattevin, P. Jaubert et al.

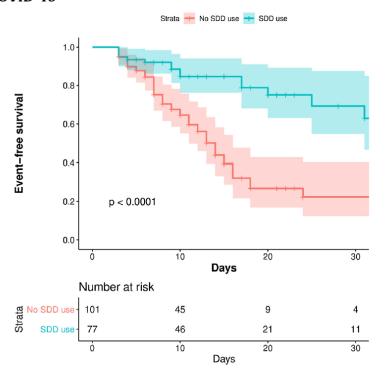
178 consecutive patients with critical COVID-19 who required mechanical ventilation in ICU longer than 48 h.

Table 1Baseline characteristics and clinical course according to SDD use.

Characteristics	SDD group, n = 77	No SDD group, n = 101	<i>P</i> -value 0.03	
Age, median [IQR]	66 [55–72]	68 [62–74]		
Male gender, n (%)	60 (78)	75 (74)	0.73	
SAPS-2 score at admission, median [IQR]	37 [28–45]	42 [33–50]	0.03	
Inter-hospital transferred patients, n (%)	18 (23)	18 (18)	0.45	
Extracorporeal membrane oxygenation support, n (%)	8 (10)	19 (19)	0.14	
At least one VAP, n (%)	16 (21)	50 (50)	< 0.001	
VAP incidence (per 1000 ventilator days)	9.4	23.5	< 0.001	
VAP microbiological documentation, n				
Enterobacteriaceae	14	29		
H. influenzae	0	7		
P. aeruginosa	4	6		
A. baumannii	0	2		
S. aureus	0	11		
Other	1	3		
Bloodstream infection, n (%)	10 (13)	17 (17)	0.53	
Length of mechanical ventilation, days	14 (8-28)	15 (9-29)	0.75	
28-day mortality, n (%)	5 (6.5)	22 (21.8)	0.01 ^a	

^a After adjustment for age, gender, SAPS-2 and extracorporeal membrane oxygenation support, the hazard ratio for death in the SDD group was 0.33,95% CI [0.12-0.87]; P = 0.03.

Contents lists available at ScienceDirect


Anaesthesia Critical Care & Pain Medicine

journal homepage: www.elsevier.com

Letter to the Editor

Selective digestive decontamination to reduce the high rate of ventilator-associated pneumonia in critical COVID-19

BSI rate was similar between the 2 groups (13% vs. 17%).

VAP incidence was lower in the SDD group than in the group without SDD (9.4 vs. 23.5 per 1000 ventilator days.

Table 2Multivariate analysis of predictive factors of ventilator-acquired pneumonia.

Ventilator-acquired pneumonia	Patients with VAP (n = 66)	Patients w/o VAP (n = 112)	P-value	Adjusted HR (95% CI)	<i>P</i> -value
Age, ^a median [IQR]	67 [59–72]	67 [58–75]	0.71	1.01 (0.99-1.04)	0.41
Male gender, ^a n (%)	58 (88)	76 (68)	0.01	2.70 (1.27-5.74)	0.01
SAPS-2 score at admission, median [IQR]	40 [33-49]	38 [30-48]	0.82		
ECMO support, ^a n (%)	18 (27)	9 (8)	< 0.001	2.3 (1.24-4.10)	0.008
Inter-hospital transferred patients, n (%)	12 (18)	24 (21)	0.52		
SDD use, a n (%)	16 (24)	61 (54)	< 0.001	0.36 (0.20-0.63)	< 0.001

SAPS-2 = simplified acute physiology score; ECMO = extracorporeal membrane oxygenation; SDD = Selective digestive decontamination.

^a Variables included in the multivariate analysis.

Long-term survival of mechanically ventilated patients with severe COVID-19: an observational cohort study

Oscar Peñuelas^{1,2*}, Laura del Campo-Albendea³, Amanda Lesmes González de Aledo⁴, José Manuel Añón^{2,5},

Retrospective, multicentre, national cohort study between March 8 and April 30, 2020 in 16 intensive care units (ICU) in Spain.

Participants were consecutive adults who received invasive mechanical ventilation for *COVID-19*.

The primary outcomes was 180-day survival after hospital admission.

A predictive model was developed to estimate the probability of 180-day mortality.

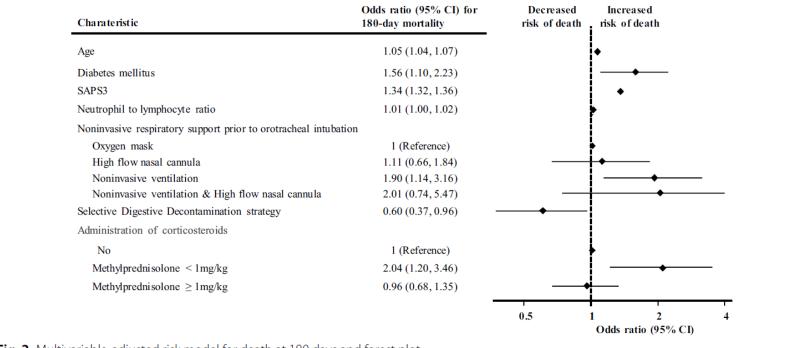
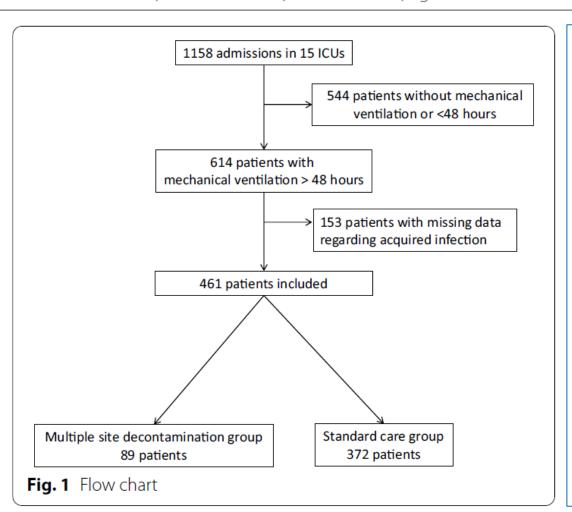



Fig. 2 Multivariable-adjusted risk model for death at 180 days and forest plot

Multiple-site decontamination regimen decreases acquired infection incidence in mechanically ventilated COVID-19 patients

Nicolas Massart^{1*†}, Florian Reizine^{2,3†}, Pierre Fillatre¹, Philippe Seguin⁴, Béatrice La Combe⁵, Aurélien Frerou⁶, Pierre-Yves Egreteau⁷, Baptiste Hourmant⁸, Pierre Kergoat⁹, Julien Lorber¹⁰, Jerome Souchard^{3,2}, Emmanuel Canet¹¹, Guillaume Rieul³, Yannick Fedun³, Agathe Delbove^{3†} and Christophe Camus^{2†}

An ancillary analysis of a multicenter retrospective observational study in 15 ICUs in western France (COCOREVAP cohort)

- 3 ICUs used multiple site decontamination (MSD) throughout the duration of intuibation
- topical antibiotics four times daily in the oropharynx and the gastric tube,
 - Tobramycin, 300/d in Rennes or gentamicin, 543 mg/day
 - Colistine sulfate, 400/d
 - Amphotericin B 2g/d
- chlorhexidine body wash once daily
- and a 5-day nasal mupirocin course.

12 ICUs used standard-care (SC)

AIs were compared between the 3 ICUs using MSD (MSD group) and the 12 ICUs using SC (SD group).

To draw unbiased marginal estimates of exposure effect, a propensity-score matched analysis was performed,

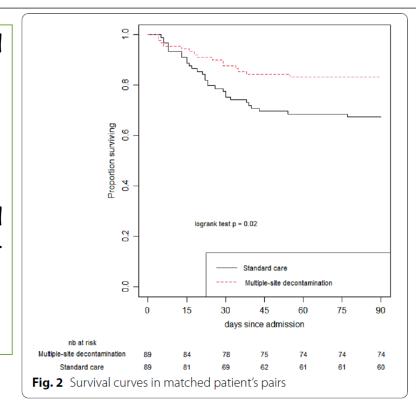
Multiple-site decontamination regimen decreases acquired infection incidence in mechanically ventilated COVID-19 patients

Nicolas Massart^{1*†}, Florian Reizine^{2,3†}, Pierre Fillatre¹, Philippe Seguin⁴, Béatrice La Combe⁵, Aurélien Frerou⁶, Pierre-Yves Egreteau⁷, Baptiste Hourmant⁸, Pierre Kergoat⁹, Julien Lorber¹⁰, Jerome Souchard^{3,2}, Emmanuel Canet¹¹, Guillaume Rieul³, Yannick Fedun³, Agathe Delbove^{3†} and Christophe Camus^{2†}

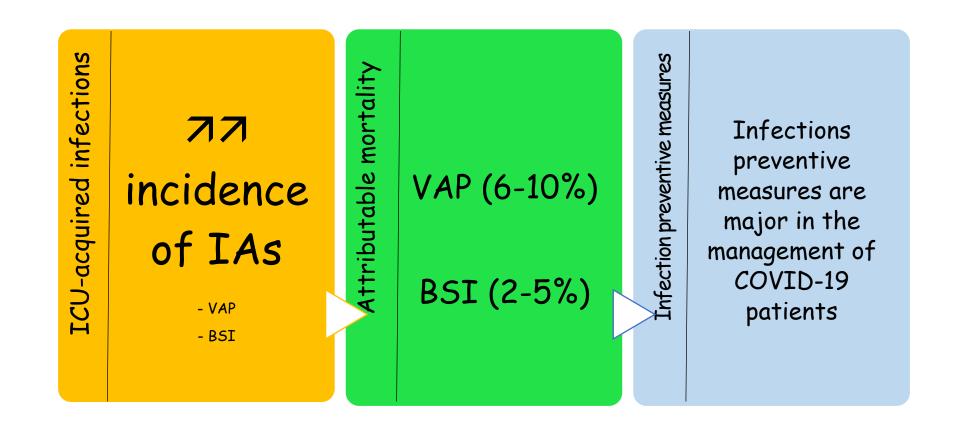
Annals of Intensive Care

The official journal of the French Intensive Care Society

IF 2020
6.925


2022

There were 34 AIs in the MSD group (2117 patient-days), as compared with 274 AIs in the SC group (8957 patient-days) (p < 0.001).


MSD was independently associated with a lower risk of AI (IRR = 0.56 [0.38-0.83]; p = 0.004).

When the same model was used for each site of infection, MSD remained independently associated with a lower risk of VAP (IRR = 0.52 [0.33-0.89]; p = 0.005) but not of BSI (IRR = 0.58, [0.25-1.34], p = 0.21).

Hospital mortality was lower in the MSD group (16.9% vs 30.1%, p = 0.017).

Rationale for using decontamination in patients with COVID-19

